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Abstract: The chemistry and spectroscopy of transition elements depend on complex interactions found for 
partially filled d subshells. There are complex electron�electron repulsion effects within a partially filled subshell 
and additional complications due to participation of some of the d orbitals in chemical bonding. The number of 
states involved can be quite large, and the mathematical treatment involves matrices as large as 28 by 28. The 
direct solution for eigenvalues and eigenvectors of matrices this large was not even attempted in the 1930s, but is 
well within the capabilities of current undergraduates and computers. Full matrices in the form of spreadsheets 
are provided in this paper for octahedral and tetrahedral symmetry for all cases from d2 through d8. 
Diagonalization of such matrices with MACSYMA is illustrated. Construction of full Tanabe�Sugano diagrams 
is possible for students for any choice of input parameters. 

Introduction 

The calculation of allowed energies for a free atom with a 
partially filled d subshell is reasonably complex. The number 
of quantum states involved is 10!/(n!×(10 � n)!), where n is the 
number of d electrons in the partially filled subshell. The 
number of states reaches 210 and 252 for n = 4 and n = 5. 
These possible quantum states naturally group together under 
different term symbols with degeneracies from 1 (1S) to 36 
(4G). Calculating the allowed terms for different numbers of 
electrons in the subshell from 1 to 9 is straightforward and is a 
common student exercise in inorganic chemistry. The results 
are shown in Table 1. 

The relative energies corresponding to the different terms 
can be expressed by two parameters describing the electron�
electron repulsion within the subshell like the Racah [1�4] 
parameters B and C. An equally valid set of two parameters 
involves using the Racah B together with D, the parameter in 
the spin correlation stabilization energy (S.C.S.E.) equation: 

 ( )u uS.C.S.E. = D*n * n -1  (1) 

where nu is the number of unpaired electrons in the 
configuration [5�7]. The two parameter sets are related by the 
equation 

 C = �2.5 B + (36/14) D (2) 

Calculating allowed energies for free atoms is 
straightforward, but not of great chemical significance, 
because the transition elements are normally encountered in 
compounds. In the most favorable geometries found in 
compounds, octahedral and tetrahedral, the d orbitals split into 
two sets with different energies that are usually described with 
Mulliken symbols taken from the Oh character table, t2g and eg. 
This introduces a third parameter, generally taken as ∆, the 
difference in energy between the t2g and eg orbitals. D states 
split similarly into T2g and Eg energy levels. S and P terms 

become A1g and T1g levels respectively, but all the other free 
atom terms split into two to six different energies in octahedral 
symmetry, all of which can be assigned names from the Oh 
character table. Plots of the energy of these quantum states 
versus ∆ are useful and are available as Orgel [4, 8, 9] and 
Tanabe�Sugano diagrams [10�12] The quantum states can be 
expressed as linear combinations of products of orbitals, and 
the orbitals themselves can be assigned energies of 0 (for t2g) 
and +∆ (for eg) in octahedral geometry. The lines in Orgel 
diagrams, however, are often curved, because the linear 
combinations change as functions of ∆. Even by plotting 
relative energies, it is not possible to show everything one 
wants in a two-dimensional graph, and some of the parameters 
must be fixed as in the assumption that 

 C/B = 3.7 (3) 

which has been used in calculating many of the Tanabe�
Sugano diagrams in books. This paper shows how students can 
calculate these energies to check published graphs, to examine 
regions on a finer scale, or to make their own diagrams for 
different choices of the adjustable parameters. 

The original calculations for Tanabe�Sugano diagrams were 
performed using basis functions that were eigenvectors of the 
orbital angular momentum operators. Students in chemistry are 
much more familiar with the basis functions which fit the Oh 
character table, dxz, dyz, dxy, dzz, and dxx�yy, which we will call 
position orbitals. Calculations with the position orbitals are 
slightly more complicated for free ions [6], but are just as good 
for all the geometries encountered in actual solids; thus, all the 
calculations presented in this paper will use these five position 
orbitals familiar to chemists. 

Two-Electron Matrix Elements with Position Orbitals 

There are 45 basis functions for two electrons in the ten 
orbitals of a d subshell including electron spin. With modern 
computers, one can handle 45 × 45 matrices, but it is still 
advantageous to separate different spin and symmetry 
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Table 1. Allowed Energy Levels for Partially Filled d Subshells for 
Free Atoms 

subshell Number of 
quantum 

states 

Number of 
energy 
levels 

Term Symbols 

d1 10 1 2D 
d2 45 5 3F, 3P, 1G, 1D, 1S 
d3 120 8 4F, 4P, 2H, 2G, 2F, 2D, 2D, 

2P 
d4 210 16 5D, 3H, 3G, 3F, 3F, 3D, 3P, 

3P, 1I, 1G, 1G, 1F, 1D, 1D, 
1S, 1S 

d5 252 16 6S, 4G, 4F, 4D, 4P, 2I, 2H, 
2G, 2G, 2F, 2F, 2D, 2D, 2D, 
2P, 2S 

d6 210 16 5D, 3H, 3G, 3F, 3F, 3D, 3P, 
3P, 1I, 1G, 1G, 1F, 1D, 1D, 
1S, 1S 

d7 120 8 4F, 4P, 2H, 2G, 2F, 2D, 2D, 
2P 

d8 45 5 3F, 3P, 1G, 1D, 1S 
d9 10 1 2D 
d10 1 1 1S 

 
Table 2. Basis Functions with aas Symmetry and the 3 ´ 3 Matrix for 
the d2 Case with Parallel Spins and Parameters D = 1688, ∆ = 18500, 
A = �926,  B = 700, and  C = 2,590.57, All in Units of  Kaysers or 
cm�1 

basis functions Matrix (numeric) 
| xzα   yzα >            −4426. 0. −4200. 
|  xyα  zzα > 0. 11974. 0. 
| xyα xx-yyα > −4200. 0. 20374. 

basis functions Matrix (functional form) 
| xzα   yzα >            Α−5∗Β 0. −6∗Β 
|  xyα  zzα > 0. Α−8∗Β+∆ 0. 
| xyα xx-yyα > −6∗Β 0. Α+4∗Β+∆ 

eigenvalues eigenvectors 
-5117.982 | 0.98670 0. 0.16257> 
11974. | 0. 1. 0.> 
21065.982 | -0.16257 0. 0.98670> 

 
functions. For example, there are only ten basis functions with 
positive spin for both electrons, and the ten divide into three 
groups of three and a 1 × 1 matrix when one considers 
symmetry on reflection in the three �h planes, yz, xz, and xy. 
The four symmetries can be described as aas, asa, saa, and sss 
if one uses the letters a and s for antisymmetric and symmetric 
with respect to reflection in the planes perpendicular to the x, 
y, and z axes, respectively. One can classify basis functions 
into these four classes easily by counting the number of x�s, 
y�s, and z�s in the subscripts, and seeing if the numbers are odd 
or even. If all three numbers are even, one has sss symmetry as 
for |dzzα dxx-yyα>, where the greek letter α is used to designate a 
spin of +1/2. Similarly |dxzα dyzα> is seen to have aas 
symmetry. 

Table 2 shows the three αα  basis functions with aas 
symmetry and the nine matrix elements for ∆ = 17,100 cm�1; D 
= 1,688; and the Racah parameters, A = �926, B = 700, and C 
= 2,590.57. This 3  × 3 matrix has eigenvalues of �5,117.982, 
11,974.000, and 21,065.982. The predicted absorption peaks 

for these three energy levels are at 17,092 and 26,184 cm�1. 
These are not unreasonable parameters for the blue V(H2O)6

3+ 
ion, for which the observed absorption peaks [13, 14] are at 
17,100 and 25,000 cm�1. 

If ∆ is set to zero the eigenvalues are �6,526, �6,526, and 
3,974, the energies of the two triplet states for a d2 system with 
these values of the parameters. The values for the free ion are 
A � 8 × B = �6,526 and A + 7 × B = 3,974 for the 3F and 3P 
states respectively. Note that the energy difference is a 
function of the parameter B: 3,974 � (�6,526) = 10,500 cm�1 = 
15 × B. The parameter D specifies (by eq 1) the difference 
between the average energies of all states and all states with 
the maximum multiplicity. The parameter B determines the 
energy difference between the states of maximum multiplicity, 
which is 15 × B for d2, d3, d7, and d8. 

There are 25 basis functions in d2 of the  αβ type, with spin 
up for the first electron and down for the second. Seven of 
these are of sss symmetry and are shown in Table 3. The three 
other symmetry classes each have six basis functions. There is 
no particular reason to remain with cm�1 as the energy unit or 
with values chosen for a particular oxidation state of 
vanadium. Thus, a more general set of parameters, B = 10, D = 
24.111111, and C = 37 is used for Table 3. 

The 7 × 7 matrix with ∆ = 300 shown in Table 3 has 
eigenvalues of 848.575, 662.805, 662.805, 506.778, 237.981, 
68.751, and 68.751, corresponding to the 1A1, 1E, 3A2, 1A1, and 
1E states, respectively, recognizing that each E state must be 
present twice. 

Changing the ∆ value simply requires adjusting the diagonal 
matrix elements. For ∆ = 0 the diagonal becomes 137.777778, 
137.777778,       137.777778,      137.777778,       �16.222222, 
�16.222222, 137.777778. The matrix for ∆ = 0 has 
eigenvalues of 385.778, 100.778, 100.778, 100.778, 30.778, 
30.778, and �93.222, giving the energies of all the free-ion 
singlet states along with the 3F energy from the 3A2 line. Note 
that the 3A2 state has an eigenvalue of �93.222 + 2 ∆ in both 
calculations. With the basis set in Table 3, the 3A2 eigenvector 
is |0, 0, 0, 0, �0.7071, 0.7071, 0>. 

It is very easy to make a mistake in one or more of 49 matrix 
elements in a 7 × 7 matrix, and it is quite gratifying to get 
close enough to get even one eigenvalue and eigenvector that 
one can recognize is correct like the �93.222 + 600 = 506.778 
value above. Furthermore the d2 calculations are relatively easy 
compared to the d4 and d5 cases; thus, it is desirable to have 
the full matrices available in spreadsheet and word-processor 
forms, ready for student use, and one of the aims of this paper 
is to make these available. 

For some purposes, it would be desirable to have the full 
45 × 45 matrix for the d2 case, but it requires many pages to 
print over 2000 values most of which are zero. Rounding to 
the nearest integer, as in one version of Table 4, still leaves the 
45 × 45 matrix nearly unreadable. A more convenient 
representation is created in a spreadsheet, and Table 4 is 
available in the spreadsheet d2p.wb2 in cell positions a129 
through ax176. If you wish to have the full matrix for other 
values of the parameters, the entries in cells b3 through b6 can 
be adjusted. The 10 × 10 and 25 × 25 portions of this matrix 
are shown with double spacing and extra labels in the 
intermediate sections of the spreadsheet, cells a73 through p99 
and a1 through ak71, respectively, and they are presented in 
printed form for the particular choice of B = 10, D = 21.014, 
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Table 3. Basis Functions with sss Symmetry and the 7 ´ 7 Matrix for the d2 Case with Opposite Spins and Parameters D = 24.111, ∆ = 300, A =    
�13.222, B = 10, and C = 37 

basis function    Matrix    
| xzα   xzβ > 137.778 67. 67. 47. 17.3205  17.3205  67. 
| yzα   yzβ >   67. 137.778 67. 47. −17.3205  −17.3205 67. 
|  xyα xyβ > 67.  67. 137.778 77. 0. 0. 37. 
| zzα   zzβ > 47. 47. 77. 737.778 0. 0. 77. 
| zzα   xx-yyβ > 17.3205 −17.3205 0. 0. 583.778 77. 0. 
|  xx-yyα  zzβ > 17.3205 −17.3205 0. 0. 77. 583.778 0. 
|xx-yyα xx-yyβ > 67. 67. 37. 77. 0. 0. 737.778 

 
C = 29.036, and A = �7.028 in Tables 5 and 6. A printed 
version of these sections of the spreadsheet takes seven pages, 
but is very useful to have available because these two-electron 
matrix elements appear in calculations for the d3 through d9 
cases as well. 

Note that Tables 4, 5, and 6 are supplied both in spreadsheet 
(d2p.wb2) and in two text forms, one printed from the 
spreadsheet and with rounded values in typed tables. 

These matrix elements can all be expressed in analytical 
form in the Racah parameters and are easily programmed into 
the spreadsheet. The diagonal terms are all of the form 

 A + (n/2)B + mC + p∆ (4) 

where n, m, and p are integers. The value of p is obtained by 
counting the number of higher-energy d orbitals present in the 
basis function, and can vary from 0 to 2. The tetrahedral case 
can be handled using a negative value for ∆ and adjusting A, or 
by making a different spreadsheet. 

There are four different types of off-diagonal matrix 
elements, 0, q × 3(1/2) × B, r × B, and s × t × B + t × C, where q, 
r, s, and t are integers, and t can be only +1 or �1. The allowed 
values of r are �6, �3, +3, and +6. Similarly, s can be 0, 1, 3, 
or 4, and q ranges from �3 to +3 with +5 and �5 also allowed 
when there are more than two d electrons. One is tempted to 
develop rules or special tables to show when these different 
values are found, but my personal experience has been that it 
is best to rely on the full 10 × 10 and 25 × 25 matrices in 
Tables 5 and 6 when the value of a particular two-electron 
matrix element is needed. 

The order of the basis functions in tables like Table 4 is 
extremely important, but it is more or less arbitrary. It is 
desirable to place all the ones with the same number of eg 
orbitals together and to group orbitals with the same 
symmetries together. Where these are inconsistent, either way 
can be chosen, and the choices in this paper are not completely 
consistent. In general a priority order of dxz, dyz, dxy, dzz, and 
finally dxx�yy has been used, but this has been violated to keep 
functions like |xzα zzβ> and |zzα xzβ> together. It is hoped that 
the order in Table 6 and the double spacing in the six-page 
version will be helpful to students needing to look up 
particular d2 matrix elements. 

To get all the energies for an Orgel diagram for the d2 case, 
the 7 × 7 matrix can be diagonalized and any one of the 6 × 6 
matrices for two electrons of opposite spin extracted from 
Table 6. The thirteen eigenvalues are listed in Table 7 for ∆ = 
300 and for the two limiting cases of ∆ = 0 and the strong-field 
limit, ∆ approaching infinity. Table 8 is an older version of 
this table with different values for A, C, and D. 

The strong-field limits are obtained by diagonalizing a 
block-diagonal matrix with all matrix elements between terms 
for different ∆ values set to zero. Table 9 shows the form taken 
by the asa 6 × 6 matrix in this limit. The eigenvalues of this 
matrix are �63.222, 70.778, 206.778, 326.778, 360.778, and 
400.778, corresponding to the 3T1, 1T2, 3T2, 3T1, 1T2, and 1T1 
states, respectively. The 326.778 eigenvector, |0. 0. �0.612 
0.612 0.353 �0.353> can be seen to be a triplet from the 
pattern of equal values and opposite signs for pairs of basis 
functions with forms like |xzα zzβ> and |zzα xzβ>. Deciding 
which ones are T1 and which are T2 is complicated in this case 
by the fact that 90-degree rotation about the y axis thoroughly 
mixes the zz and xx�yy orbitals. The easiest way to make the 
assignments is by the symmetry of the aas eigenvectors to C4z, 
but it can be done using the matrix for C4y in Table 10. The 
orbital dyy, which is completely symmetric to rotations about 
the y axis, is the linear combination, dyy = 0.866 × dzz � 0.500 × 
dxx�yy, and it is this pattern of constants related by a factor of 
minus one over the square root of 3 which appears in the T1 
eigenvectors. Thus 1T1 = |400.778> = |0. 0. 0.612 0.612 �0.353 
�0.353>. 

The 326.778 eigenvector is found to have 3T1 symmetry, and 
the energy is at A + 4 × B + ∆. Finding the analytic form from 
a numerical value is somewhat easier if C is not an integer; 
thus, while the choice A = �13.222222, B = 10, D = 
24.111111, and C = 37 is useful for checking literature plots 
constructed for C/B = 3.7, most of this paper uses a different 
choice for the parameters, A = �7.028, B = 10, C = 29.036, and 
D = 21.014. With this choice, two-electron matrix elements of 
29.036, 39.036, 59.026, and 69.036 are easily recognized as C 
+ s × B with s values from 0 to 4. 

Matrix Elements for the d3 Case 

There are only two basis functions for three d electrons that 
have aas symmetry, have two spins up and one down, and 
which do not use any e orbitals. They can be written as 

 |11> = |xzα xyα xzβ> and 

 |12> = |yzα xyα yzβ>  

The diagonal matrix elements are sums of three two-electron 
integrals; thus, 

<11|11> = <xzα xyα|xzα xyα> + <xzα xzβ|xzα xzβ> + <xyα 
xzβ|xyα xzβ> 

Looking up the three two-electron integrals in Tables 4 and 5 
gives:   <11|11> = �57.028 + 120.08 + 2.008 = 65.06 
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Table 4. The Full 45 × 45 Matrix for d2, Rounded to Integers. The Parameters A = 0, B = 10, C = 29.036, D = 21.014, and ∆ = 300 are used. See the spreadsheet d2p.wb2 in Positions a129 to ax176 for an 
Alternative Form of This Table 
sym. 
 

orbitals 
 α β 

matrix 
 

a a s xz yz     -57 0 -60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a a s xy zz     0 213 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a a s xy  xx-yy     -60 0 333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a s a yz xy     0 0 0 -57 -52 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a s a xz zz     0 0 0 -52 303 -52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a s a xz  xx-yy     0 0 0 30 -52 243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s a a xz xy     0 0 0 0 0 0 -57 -52 -30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s a a yz zz     0 0 0 0 0 0 -52 303 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s a a yz  xx-yy     0 0 0 0 0 0 -30 52 243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s s s zz  xx-yy     0 0 0 0 0 0 0 0 0 513 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s s s   xz xz   0 0 0 0 0 0 0 0 0 0 120 59 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 17 17 59 0 0 0 0 0 0 0 0 0 0 

s s s   yz yz   0 0 0 0 0 0 0 0 0 0 59 120 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 -17 -17 59 0 0 0 0 0 0 0 0 0 0 

s s s   xy xy   0 0 0 0 0 0 0 0 0 0 59 59 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69 0 0 29 0 0 0 0 0 0 0 0 0 0 

a a s   xz yz   0 0 0 0 0 0 0 0 0 0 0 0 0 2 59 0 0 0 0 17 17 -30 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a a s   yz xz   0 0 0 0 0 0 0 0 0 0 0 0 0 59 2 0 0 0 0 17 17 30 -30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a s a   yz xy   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 59 0 0 0 0 0 0 -35 17 0 -30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a s a   xy yz   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59 2 0 0 0 0 0 0 17 -35 -30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s a a   xz xy   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 59 0 0 0 0 0 0 0 0 -35 17 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s a a   xy xz   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59 2 0 0 0 0 0 0 0 0 17 -35 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a a s   xy zz   0 0 0 0 0 0 0 0 0 0 0 0 0 17 17 0 0 0 0 282 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a a s   zz xy   0 0 0 0 0 0 0 0 0 0 0 0 0 17 17 0 0 0 0 69 282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a a s   xy  xx-yy   0 0 0 0 0 0 0 0 0 0 0 0 0 -30 30 0 0 0 0 0 0 362 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a a s    xx-yy xy   0 0 0 0 0 0 0 0 0 0 0 0 0 30 -30 0 0 0 0 0 0 29 362 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a s a   xz zz   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -35 17 0 0 0 0 0 0 342 39 -35 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a s a   zz xz   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 -35 0 0 0 0 0 0 39 342 17 -35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a s a   xz  xx-yy   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -30 0 0 0 0 0 0 -35 17 302 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a s a    xx-yy xz   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -30 0 0 0 0 0 0 0 17 -35 59 302 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s a a   yz zz   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -35 17 0 0 0 0 0 0 0 0 342 39 35 -17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s a a   zz yz   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 -35 0 0 0 0 0 0 0 0 39 342 -17 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s a a   yz  xx-yy   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 35 -17 302 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s a a    xx-yy yz   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 -17 35 59 302 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s s s   zz zz   0 0 0 0 0 0 0 0 0 0 39 39 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 720 0 0 69 0 0 0 0 0 0 0 0 0 0 

s s s   zz  xx-yy   0 0 0 0 0 0 0 0 0 0 17 -17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 582 69 0 0 0 0 0 0 0 0 0 0 0 
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Table 4. The Full 45 × 45 Matrix for d2, Rounded to Integers. The Parameters A = 0, B = 10, C = 29.036, D = 21.014, and ∆ = 300 are used. See the spreadsheet d2p.wb2 in Positions a129 to ax176 for an 
Alternative Form of This Table (continued) 
sym. 
 

orbitals 
 α β 

matrix 
 

s s s    xx-yy zz   0 0 0 0 0 0 0 0 0 0 17 -17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69 582 0 0 0 0 0 0 0 0 0 0 0 

s s s    xx-yy  xx-yy   0 0 0 0 0 0 0 0 0 0 59 59 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69 0 0 720 0 0 0 0 0 0 0 0 0 0 

a a s     xz yz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -57 0 -60 0 0 0 0 0 0 0 

a a s     xy zz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 213 0 0 0 0 0 0 0 0 

a a s     xy  xx-yy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -60 0 333 0 0 0 0 0 0 0 

a s a     yz xy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -57 -52 30 0 0 0 0 

a s a     xz zz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -52 303 -52 0 0 0 0 

a s a     xz  xx-yy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 -52 243 0 0 0 0 

s a a     xz xy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -57 -52 -30 0 

s a a     yz zz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -52 303 52 0 

s a a     yz  xx-yy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -30 52 243 0 

s s s     zz  xx-yy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 513 

 
 
 
 
Table 5. The 10 × 10 Matrix for d2 for Parallel Spins. The Parameters A = 0, B = 10, C = 29.036, D = 21.014, and ∆ = 300 Are Used. See the Spreadsheet d2p.wb2 in Positions a72 to p99 for an Alternative 
Form of This Table 

| xzα yzα  > -57.028 0 -60 0 0 0 0 0 0 0 
| xyα zzα  > 0 212.972 0 0 0 0 0 0 0 0 
| xyα xx-yyα  > -60 0 332.972 0 0 0 0 0 0 0 
| yzα xyα  > 0 0 0 -57.028 -51.962 30 0 0 0 0 
| xzα zzα  > 0 0 0 -51.962 302.972 -51.962 0 0 0 0 
| xzα xx-yyα > 0 0 0 30 -51.962 242.972 0 0 0 0 
| xzα xyα  > 0 0 0 0 0 0 -57.028 -51.962 -30 0 
| yzα zzα  > 0 0 0 0 0 0 -51.962 302.972 51.962 0 
| yzα xx-yyα  > 0 0 0 0 0 0 -30 51.962 242.972 0 
| xx-yyα xx-yyα  > 0 0 0 0 0 0 0 0 0 512.972 
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Table 6. The 25 × 25 Matrix for d2 for Opposed Spins. The Parameters A = 0, B = 10, C = 29.036, D = 21.014, and ∆ = 300 Are Used. See the Spreadsheet d2p.wb2 in Positions a11 to ak68 for an 
Alternative Form of This Table with Less Round Off and Double Spacing 

| xzα  xzβ > 120 59 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 17 17 59 
| yzα  yzβ > 59 120 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 -17 -17 59 
| xyα  xyβ > 59 59 129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69 0 0 29 
| xzα  yzβ > 0 0 0 2 59 0 0 0 0 17 17 -30 30 0 0 0 0 0 0 0 0 0 0 0 0 
| yzα  xzβ > 0 0 0 59 2 0 0 0 0 17 17 30 -30 0 0 0 0 0 0 0 0 0 0 0 0 
| yzα  xyβ > 0 0 0 0 0 2 59 0 0 0 0 0 0 -34.6 17 0 -30 0 0 0 0 0 0 0 0 
| xyα  yzβ > 0 0 0 0 0 59 2 0 0 0 0 0 0 170 -34.6 -30 0 0 0 0 0 0 0 0 0 
| xzα  xyβ > 0 0 0 0 0 0 0 2 59 0 0 0 0 0 0 0 0 -34.6 17 0 30 0 0 0 0 
| xyα  xzβ > 0 0 0 0 0 0 0 59 2 0 0 0 0 0 0 0 0 17 -34.6 30 0 0 0 0 0 
| xyα  zzβ > 0 0 0 17 17 0 0 0 0 282 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
| zzα  xyβ > 0 0 0 17 17 0 0 0 0 69 282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
| xyα  xx-yyβ > 0 0 0 -30 30 0 0 0 0 0 0 362 29 0 0 0 0 0 0 0 0 0 0 0 0 
| xx-yyα  xyβ > 0 0 0 30 -30 0 0 0 0 0 0 29 362 0 0 0 0 0 0 0 0 0 0 0 0 
| xzα  zzβ > 0 0 0 0 0 -34.6 17 0 0 0 0 0 0 342 39 -34.6 17 0 0 0 0 0 0 0 0 
| zzα  xzβ > 0 0 0 0 0 17 -34.6 0 0 0 0 0 0 39 342 17 -34.6 0 0 0 0 0 0 0 0 
| xzα  xx-yyβ > 0 0 0 0 0 0 -30 0 0 0 0 0 0 -34.6 17 302 59 0 0 0 0 0 0 0 0 
| xx-yyα  xzβ > 0 0 0 0 0 -30 0 0 0 0 0 0 0 17 -34.6 59 302 0 0 0 0 0 0 0 0 
| yzα  zzβ > 0 0 0 0 0 0 0 -34.6 17 0 0 0 0 0 0 0 0 342 39 34.6 -17 0 0 0 0 
| zzα  yzβ > 0 0 0 0 0 0 0 17 -34.6 0 0 0 0 0 0 0 0 39 342 -17 34.6 0 0 0 0 
| yzα  xx-yyβ > 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 34.6 -17 302 59 0 0 0 0 
| xx-yyα  yzβ > 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 -17 34.6 59 302 0 0 0 0 
| zzα  zzβ > 39 39 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 720 0 0 69 
| zzα  xx-yyβ > 17 -17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 582 69 0 
| xx-yyα  zzβ > 17 -17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69 582 0 
| xx-yyα  xx-yyβ > 59 59 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69 0 0 720 
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Table 7. Eigenvalues for ∆ Values of 0, 300, and ∞ from the 25 × 25 Matrix for d2 with A = -7.028, B = 10., and C = 29.036 

State ∆ 0 300 infinite Analytic form 
1A1 336.224 814.163 2*∆ + 189.116 A + 8*B + 4*C +2*∆ 
1E  91.044 653.071 2*∆ + 51.044 A + 2*C + 2*∆ 
3A2 -87.028 512.972 2*∆ - 87.028 A - 8*B + 2*∆ 
1T1  91.044 391.044 ∆ + 91.044 A + 4*B + 2*C + ∆ 
1T2  91.044 355.124 ∆ + 51.044 A + 2*C + ∆ 
3T1  62.972 341.944 ∆ + 32.972 A + 4*B + ∆ 
3T2 -87.028 212.972 ∆ - 87.028 A - 8*B + ∆ 
1A1  91.044 213.105 238.152 A + 10*B + 5*C 
1E  21.044  59.017  61.044 A + B + 2*C 
1T2  21.044  56.963  61.044 A + B + 2*C 
3T1 -87.028 -66.050 -57.028 A - 5*B 

 
 

The other diagonal term, <12|12>, is the sum of the same 
three numbers. The off-diagonal element is the two-electron 
integral, <xzα xzβ|yzα yzβ> = 59.036. One always gets a single 
two-electron term if two and only two of the pieces in the two 
basis functions are different. One of the basis functions may 
need to be rearranged to see the match, but if there are three or 
more differences, the matrix element must be zero. 

This 2 × 2 matrix is shown in Table 11. It has eigenvalues, 
eigenvectors, and symmetries as shown in the lower part of the 
table. Note that C4z takes |11> into �|12> so that the sum, 0.707 
|11> + 0.707 |12> is antisymmetric to this rotation and thus 
1T2. These two energy eigenvalues, 6.024 and 124.096 in the 
strong field limit, can be written as 3A � 6B + 3C and 3A + 5C. 

For the d3 case at +1∆ and aas symmetry there are six basis 
functions and thus a 6 × 6 matrix to be diagonalized, as shown 
in Table 12. The diagonal elements are again sums of three d2 
diagonal terms from Tables 4 and 5. Here, off the diagonal, we 
have a few terms like <xzα zzα yzβ|yzα xx�yyα xzβ> that are 
zero because there are three differences. Most cases of terms 
with only one difference are zero from symmetry, but if the 
difference is changing zz to xx�yy, there is no symmetry 
change and a sum must be calculated. For example, 

<xzα zzα yzβ|xzα xx�yyα yzβ> = <xzα zzα|xzα xx�yyα> + 
<zzα yzβ|xx�yyα yzβ> =  �51.9615 + 34.641 = �17.3205 

Table 12 also gives the eigenvalues and term symbols for 
the six states. The quartets, 4T2 at ∆ � 171.084 and 4T1 at ∆ � 
51.084, are easily written as 3A � 15B + ∆ and 3A � 3B + ∆. 
For the doublets, however, there are two terms of each 
symmetry that mix, and the calculated eigenvalues are valid 
only for the particular value of C/B used in constructing the 
matrix. It is helpful to have the eigenvalues for the strong-field 
limit so that the 6 × 6 portion of the full 13 × 13 matrix can be 
checked. 

Full calculations for the d3 case require an 11 × 11 matrix 
for sss symmetry and three 13 × 13 matrices for the three other 
symmetries. All of these are available in the spreadsheet 
d3orb.wb2, and separately in Tables 13 through 16 in the form 
required by MACSYMA for reading in matrices. It is not 
necessary to examine all the large tables provided with the rest 
of this paper. In general, they are not necessary for 
understanding, but they will be useful whenever further 
calculations are required on a particular system. Table 13 
contains our first example of an off diagonal element of �

86.6025 = �5 × 30.5 × B. It appears as the matrix element <xz zz 
xz| xz xx�yy xz> which must be evaluated as a sum 

<xzα zzα xzβ|xzα xx�yyα xzβ> = <xzα zzα |xzα xx�yyα>+ 
<zzα xzβ|xx�yyα xzβ> = �51.9615 � 34.641 = �86.6025 

Table 17 gives the eigenvalues for the d3 case with C/B = 
2.9036 and four values for ∆ including both the free atom and 
strong-field limits. Where the strong-field limit can be 
expressed analytically as a sum of the form 3A + bB + cC + 
d∆, the values for b, c, and d are included in Table 17. 

Spreadsheets and Tables for d4 through d8 

The form used in the spreadsheet d3orb.wb2 can be 
expanded to include the 28 × 28 and 24 × 24 matrices required 
for d4, d5, and d6 calculations. These are provided in 
spreadsheets d4orb.wb2, d5orb.wb2, and d6orb.wb2, 
respectively. The d7 and d8 matrices are essentially the same as 
d3 and d2, but they are provided as d7orb.wb2 and d8orb.wb2 
for completeness. Tables 18 through 23 give eigenvalues 
calculated from these matrices for d4 through d9 in the same 
form as Table 17. A large, essentially complete set of matrices 
for the d3, d4 and d5 cases is provided in Tables 24 through 34. 
The d6 through d8 cases can be handled by reusing the d4 
through d2 matrices, because all off-diagonal matrix elements 
are unchanged on substituting holes for electrons. 
Nevertheless, the spreadsheets for d7 and d8 are provided as 
d7orb.wb2 and d8orb.wb2 respectively. Two of the d7 tables 
are included as Tables 35 and 36. 

It is very difficult to calculate values for a large matrix 
without making some errors. Troubleshooting the 28 × 28 
matrices of sss symmetry is aided by the fact that at every stage 
in the calculation there are e orbitals which must come in pairs 
with equal eigenvalues. Thus, the most difficult ones are the 
24 × 24 matrices for T states in d4 and d5. It is very helpful to 
approach constructing these matrices in steps. The strong field 
eigenvalues are extremely useful in the first step of getting the 
block-diagonal matrices error free. The pieces of these are 10 
× 10 or smaller. The rest of the off-diagonal terms can be 
added in groups; thus, for the d4 case, I added them starting 
with the 2 × 10 group mixing tttt with ttee. This was followed 
by 8 × 10, 4 × 10, 8 × 4, and 2 × 8 groups, one at a time. At 
each stage, the patterns of T1 and T2 symmetries are conserved 
if and only if there are no errors in the group added. A similar 
order of addition for d5 would be 1 × 10, 6 × 10, 1 × 6, 10 × 1, 
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Figure 1. Energy versus delta for the lower energy orbitals in the d3 
case for delta values between 200 and 240 with A = -7.028, B = 10, 
and C = 29.036. 

10 × 6, 6 × 1, and finally the 6 × 6. Table 37 gives the 
eigenvalues after each of these additions for one particular set 
of parameters. 

Calculations for Varying Values of ∆∆∆∆ 

Figure 1 shows a plot of the energy of the lowest lying 
orbitals in the d3 case for ∆ values from 200 to 240. Such 
calculations are easily performed by making changes in the 
diagonal matrix elements of the d3 aas and d3 sss matrices. 
This type of calculation is easily handled by students, and the 
construction of a full Orgel diagram is easily possible for a 
class. 

Extension for D4h Symmetry 

For high spin d4 ions with octahedral geometry, there is a 
single electron in the e orbitals;. thus, one expects a Jahn�
Teller distortion so that one of the e orbitals, usually dzz, is 
lowered in energy. This gives one D4h symmetry instead of Oh. 
If we introduce an additional parameter, d, so that the energy 
of the e orbitals are ∆ � d and ∆ + d for dzz and dxx�yy 
respectively, it is a simple matter to calculate the energy, the 

diagonal terms, for the full 100 basis functions in d4orb.wb2. 
In fact, this spreadsheet has been modified to include the 
additional parameter, d, in cell D6 of the spreadsheet. The 
matrices with all four symmetries are shown in Table 38 and 
the file d4h180.wpd for one choice of the parameters with ∆ � 
d = 173 and ∆ + d = 187. The 18 lowest eigenvalues are 
reported in Table 39 with the appropriate term symbols so that 
the corresponding orbital and spin degeneracies are clear. 
Table 39 also shows the corresponding values for octahedral 
symmetry. 

Supporting Material. Tables 8�41 (WordPerfect format) 
and 11 Quattro Pro files are available in a single compressed 
Zip file available at (http://dx.doi.org/10.1007/ 
s00897000462b). 
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